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Abstract Old Order Amish, founded by a small number
of Swiss immigrants, exist in culturally isolated com-
munities across rural North America. The consequences
of genetic isolation and inbreeding within this group are
evident by increased frequencies of many monogenic
diseases and several complex disorders. Conversely, the
prevalence of Alzheimer disease (AD), the most common
form of dementia, is lower in the Amish than in the
general American population. Since mitochondrial dys-
function has been proposed as an underlying cause of
AD and a specific haplogroup was found to affect AD
susceptibility in Caucasians, we investigated whether
inherited mitochondrial haplogroups affect risk of
developing AD dementia in Ohio and Indiana Amish
communities. Ninety-five independent matrilines were
observed across six large pedigrees and three small ped-
igrees then classified into seven major European haplo-
groups. Haplogroup T is the most frequent haplogroup
represented overall in these maternal lines (35.4%) while
observed in only 10.6% in outbred American and
European populations. Furthermore, haplogroups J and
K are less frequent (1.0%) than in the outbred data set
(9.4–11.2%). Affected case matrilines and unaffected
control lines were chosen from pedigrees to test whether
specific haplogroups and their defining SNPs confer risk
of AD.We did not observe frequency differences between

AD cases compared to controls overall or when stratified
by sex. Therefore, we suggest that the genetic effect
responsible for AD dementia in the affected Amish
pedigrees is unlikely to be of mitochondrial origin and
may be caused by nuclear genetic factors.

Introduction
Contemporary Amish populations residing in North
America are descendants of the Anabaptists from
Switzerland (Hostetler 1993). The Anabaptist section of
Protestant Christianity was founded in 1525 by follow-
ers who practiced adult baptism, nonresistance and
separation of church and state (Kraybill 2001). Over a
century, this religious group evolved into separate bod-
ies including the Old Order Amish and Old Order
Mennonites. Both religious isolates sought religious
freedom within Alsace France and Rhineland-Pfalz
(Palatinate) Germany during the late 1600s and early
1700s. War, famine and continued religious persecution
throughout this European region forced the Anabaptists
to immigrate to North America (Kraybill 2001). During
the first wave of immigration in the early eighteenth
century, approximately 500 Amish arrived in Pennsyl-
vania and settled in several counties throughout the
state. In the early nineteenth century, a number of these
families migrated westward to Holmes County, Ohio. A
second wave of European Amish, approximately 3,000,
arrived in Pennsylvania from 1816 to 1880, but contin-
ued westward to Indiana (including Adams County) and
Ohio (areas excluding Holmes County) to establish
farming communities. The second wave of immigrants
tended to settle in areas that were not concentrated with
Amish from the first immigration wave. Decades later,
families from the Holmes County settlements within
Ohio moved to Elkhart County, Indiana and LaGrange
County, Indiana (Hostetler 1993). Present communities
within Holmes and Elkhart/LaGrange Counties are
primarily descendants from the first immigration wave
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of Swiss while Amish of Adams country are principally
descendants from the second one (Fig. 1).

Founder effect and genetic drift have influenced the
genetic architecture of the Amish population. Since
settlement, the Amish have existed in small reproduc-
tively and culturally isolated kin groups throughout the
United States. Social custom allows marriage only
between the members of the Amish community. How-
ever, communities today are very much aware of the
consequences of consanguineous marriages and actively
avoid marriage between closely related kin group
members. In effect, the religious and cultural practices of
the Amish have created island populations by restricting
gene flow into communities thereby increasing inbreed-
ing within these groups. Inbreeding depression is evident
by increased frequencies of many deleterious recessive
alleles leading to an increased frequency of many Men-
delian disorders (Francomano et al. 2003; Puffenberger
2003).

Similarly, disease prevalence of common complex
disorders such as affective disorder, Parkinson disease,
obesity and high blood pressure is elevated in families of
affected individuals within specific Amish communities
(Ginns et al. 1998; Hsueh et al. 2000; 2001; Racette et al.
2002). Alzheimer disease (AD) also demonstrates
familial clustering in Amish families; however, in con-
trast to the other complex diseases noted, the prevalence
of AD in the general Amish population is much lower
than that of outbred populations (Haines et al. 1997;
Holder and Warren 1998; Johnson et al. 1997; Pericak-
Vance et al. 1996). AD is a primary form of dementia
characterized by progressive degeneration of cortical
and subcortical neurons that leads to substantial mem-
ory and cognitive decline. The etiology of late-onset AD
(‡60 years) results from a combination of multiple genes
plus environmental factors. The apolipoprotein E
(APOE) gene is a major genetic risk factor that accounts
for at least 30% of AD susceptibility (Corder et al.

1993). Therefore, the genetic factors responsible for the
majority of AD cases have not yet been identified.

Mitochondrial dysfunction has been proposed as an
underlying mechanism of AD pathogenesis due to
reports of significant decrease of energy metabolism
within AD brain tissue and platelets (Beal 1995).
Furthermore, reduced activity of AD brain cytochrome
oxidase (complex IV), the last enzyme within
mitochondrial oxidative phosphorylation pathway
(OXPHOS), has been observed in multiple studies
(Cottrell et al. 2002; Kish et al. 1992; Maurer et al.
2000). Impairment of OXPHOS functioning and energy
production is responsible for the increase in reactive
oxygen species (ROS) generation, which leads to oxi-
dative damage within neurons. Cellular injury is evident
in the form of mitochondrial DNA (mtDNA) lesions, mt
protein nitration and mt lipid peroxidation.

We recently reported that variations within a specific
mitochondrial lineage (haplogroup U) may be involved
in AD expression in outbred Caucasian Americans and
that this effect is sex specific (van der Walt et al. 2003).
mtDNA is a nonrecombining circular molecule with a
high-mutation rate that is transmitted maternally. Due
to the mutational process of mt genome, basal mutations
have occurred throughout human evolution within lin-
eages that are specific to geographic regions (Wallace et
al. 1999). Therefore, mitochondrial lineages can be
classified into ethnic-specific haplogroups by the com-
bination of signature mtDNA sites (Torroni et al. 1992).
Nine primary mt haplogroups have been identified in
European populations (H, I, J, K, T, U, V, W, X)
(Torroni et al. 1996; Torroni and Wallace 1994).
MtDNA haplogroups have been used to follow move-
ments of humans from early human expansions to recent
migrations (Maca-Meyer et al. 2001; Torroni et al.
2001). Furthermore, haplogroup studies have also been
used to explore disease association (Hofmann et al. 1997;
Kalman et al. 1999; Kok et al. 2000; van der Walt et al.

Fig. 1 The eighteenth century
migration wave settled in
Pennsylvania (Lancaster and
surrounding counties). A subset
of these families later moved
west to Holmes County, Ohio.
In 1845, some families from
Holmes Co. moved to Elkhart/
LaGrange Co., Indiana. The
nineteenth century migration
occurred between 1816 and
1880. Families from this
second-wave established
communities in Indiana
including Adams County
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2003) and longevity within populations (De Benedictis
et al. 2001; Niemi et al. 2003; Rose et al. 2001a, b).

The goal of this study is twofold: firstly, to charac-
terize the mitochondrial genetic diversity found within
pedigrees of the Ohio and Indiana Amish communities
through haplogroup typing; and secondly, to assess
whether mitochondrial haplogroups or haplogroup-
defining SNPs confer risk to AD in these communities.

Subjects and methods

Family ascertainment

Amish families ascertained for dementia are derived
from three separate communities (Table 1). One com-
munity is composed of Amish families from the first
migration wave residing in three contiguous counties
—Elkhart and LaGrange Counties in northern Indiana
and St. Joseph County in Southern Michigan. A second
community is located in Holmes County, Ohio. The
third community consists of descendants from the sec-
ond immigration wave and is located in Adams and Jay
Counties in Indiana. For the purpose of this study, we
will refer to the three communities by the names of
Elkhart/LaGrange, Holmes and Adams. Informed con-
sent for clinical evaluations and blood draws for DNA
isolation was obtained from all participating individuals
under protocols approved by the Duke University
Medical Center and Vanderbilt University Medical
Center Institutional Review Boards (IRB). Cognitive
impairment was screened using either the Mini-Mental
State Examination (MMSE) or the Modified Mini-
Mental State Examination (3MS). For all possible
dementia diagnoses, additional informant interviews
were completed. Some subjects identified between 1993
and 2001 were seen on two or more occasions. Subjects
with education-adjusted scores of less than or equal to
86 on the 3MS evaluated from 2002 to the present also
completed a more thorough neuropsychological evalu-
ation. Clinical diagnosis of AD was made according to
NINCDS-ADRDA guidelines (McKhann et al. 1984).
Individuals were diagnosed as affected (diagnosis of
probable or possible AD), mild cognitive impairment

(MCI; memory complaint but functioned indepen-
dently), or unaffected (no history of cognitive impair-
ment). Using all sources of information, experienced
clinical staff (KWB (neuropsychologist), PCG (physician
assistant), and LM (nurse clinician)) reached consensus
diagnosis on all cases. Age at onset (AAO) was defined
as the age at which onset of cognition and memory de-
cline impeded daily activity as reported by the individual
or family member. The average AAO for females is
81 years while AAO for males is 75 years.

Pedigree construction and matriline identification

Pedigrees were constructed using participant informa-
tion, which included family names and birth dates of
parental and grand-parental family members. This
information was cross-refered with existing family data
using Progeny software to verify relationships of the new
participants added into the study. To choose indepen-
dent matrilines, we were able to follow lines of relation
from 2 to 4 generations in the smaller pedigrees or from
7 to 13 generations in the large pedigrees. For the case-
control study, matrilines were considered ‘‘affected’’ if
one member within a matriline was diagnosed with
dementia, MCI or had family history of dementia.
Similarly, control lines were identified in the pedigrees if
no members within the line were affected. Additional
controls were identified as unrelated married-in spouses
and unrelated Amish from families that were not
ascertained for this dementia study. One individual of
each matriline was chosen at random for case-control
haplogroup analysis (Fig. 2).

Genotyping

Mitochondrial SNPs

Genomic DNA was isolated from whole blood samples
by the Duke University Center for Human Genetics
DNA Banking core and Vanderbilt University Center
for Human Genetics Research DNA Resources core
using Puregene (Gentra Systems, Minneapolis, MN,

Table 1 Description of Amish pedigrees

Community Pedigree #generations #nuclear families #ind #founders #ascertained ind

Adams A 9 31 109 29 51
Adams B 2 2 9 4 4
Elkhart/LaGrange A 9 46 132 42 42
Elkhart/LaGrange B 4 5 20 6 10
Elkhart/LaGrange C 2 1 4 2 2
Elkhart/LaGrange D 2 1 5 2 3
Elkhart/LaGrange E 2 1 5 2 3
Holmes A 13 93 218 61 28
Holmes B 7 80 209 72 50
Total 260 711 220 193
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USA). European haplogroup defining mitochondrial
SNPs (n=11) were genotyped using the Taqman allelic
discrimination method. High-throughput genotyping
was carried out in a 384 well format on the ABI Prism
7900HT Sequence Detection System (Applied Biosys-
tems, Foster City, CA, USA). 2.6 ng of DNA was dis-
tributed in each well using a Hydra HTS Workstation
microdispensing system (Robbins Scientific, Sunnyvale,
CA, USA). Probes and primers for each SNP were
designed using ABI Prism Primer Express software
Version 2.0 (Applied Biosystems). Probes were either
designed incorporating a black-hole quencher reporter
(Integrated DNA Technologies, Inc., Coralville, IA,
USA) or a minor groove binding molecule (MGB)
(Applied Biosystems).

Each reaction mixture consisted of 3 ll of master mix
(0.2 U/ll Taqman Universal PCRMaster Mix, 0.9 ng/ll
of each forward and reverse primer and 0.2 ng/ll of each
probe) was dispensed by a MultiProbe2 204DT (Pack-
ard Instruments, Shelton, CT, USA). The amplification

reaction was conducted on an ABI Dual 384-well
GeneAmp PCR System 9700 utilizing the following
program: 50�C for 2 min; 95�C for 10 min; 95�C for 15 s
and 62�C for 1 min, repeated for 40 cycles; and held at
4�C upon cycling completion. Data were generated on
an ABI Prism 7900HT Sequence Detection System
(SDS) and analyzed using the SDS version 2.0 software.

Statistics

Data were stored and managed using the Pedigene sys-
tem (Haynes et al. 1995). Haplogroup frequencies within
Amish kin groups were estimated from direct counts.
Fisher’s exact tests (two-sided) were used to identify
significant frequency differences of haplogroups and
SNPs between case and control groups. Statistical sig-
nificance was declared at a = 0.05. All statistical anal-
yses were performed using SAS software release 8.1
(SAS Institute Inc, Cary, NC, USA).

Fig. 2 This simplified Amish
pedigree is composed of both an
X haplogroup matriline and a T
haplogroup matriline. Two
individuals are affected (black
circle and square) in T
haplogroup lineage therefore
therefore we identified this line
as affected for the case-control
analysis

Table 2 Mitochondrial haplogroup frequencies in Amish communities

Independent matilines
Haplogroup

Caucasian (n =
340)

Amish Overall
(n = 95)

Indiana Amish Ohio Amish
Holmes Co.
(n = 40)Adams Co. (n

= 22)
Elkhart/La
Grange Co.
(n = 33)

n Freq n Freq n Freq n Freq n Freq

H 134 39.4 30 31.6 7 31.8 9 27.3 14 35.0
I 11 3.2 1 1.1 0 0.0 0 0.0 1 2.5
J1 38 11.2 1 1.1 0 0.0 0 0.0 1 2.5
K1 32 9.4 2 2.1 0 0.0 2 6.0 0 0.0
T 36 10.6 34 35.8 10 45.5 9 27.3 15 37.5
U 41 12.1 13 13.7 0 0.0 5 15.2 8 20.0
V 10 2.9 0 0.0 0 0.0 0 0.0 0 0.0
W 5 1.5 0 0.0 0 0.0 0 0.0 0 0.0
X 5 1.5 5 5.3 2 9.1 3 9.1 0 0.0
Other 28 8.2 9 9.5 3 13.6 5 15.2 1 2.5

118



Results

A total of 228 individuals (124 females, 104 males) were
genotyped for 11 mt polymorphisms. All related indi-
viduals were removed from the data set to reveal 95
independent maternal lines distributed within nine

Amish pedigrees in the Indiana and Ohio Amish com-
munities. Furthermore, we observed seven out of the nine
major European haplogroups in the Amish pedigrees
examined (Table 2). Families analyzed in this study were
composed of a minimum of twomatrilines to a maximum
of six lines. Haplogroup frequencies observed within
maternal lines were significantly different from an out-
bred Caucasian sample (P=0.0000001). Haplogroup T is
the most frequent overall in the matrilines (35.4%) while
observed in only 10.6% in Europeans. Furthermore,
haplogroups J and K are less frequent (1.0%) than in the
European data set (9.4–11.2%). Haplogroup H is the
most common mitochondrial lineage found in outbred

Table 3 Haplogroup frequencies in Amish AD case and control matrilines

Haplogroup Control AD AD+MCI

n % n % n %

H 14 35.0 9 26.5 12.0 30.0
I 1 2.5 0 0 0.0 0.0
J 1 2.5 0 0 0.0 0.0
K 1 2.5 1 2 1.0 2.5
T 15 37.5 11 32.4 14.0 35.0
U 4 10.0 6 17.7 6.0 15.0
X 2 5.0 3 8.8 3.0 7.5
Other 2 5.0 4 11.8 4.0 10.0

Fig. 3 Families from Adams County consisted of: H(31.8%),
T(45.5%), X(9.1%), other (13.6%); families from Elkhart/LaG-
range were composed of: H(27.3%), K(6.0%), T(27.3%),
U(15.2%), X(9.1%), other (15.2%); families from Holmes County
contained: H(35.0%), I(2.5%), J(2.5%), T(37.5%), U(20.0%),
other(2.5%)
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Caucasian populations and found at similar frequencies
among Amish communities.

Stratification of Amish families by county demon-
strates that certain haplogroups are shared among
groups while others are not (Fig. 3). For example, all
three communities share haplogroups (H, T, X, other);
however, two families from Elkhart/LaGrange commu-
nity carry the K haplogroup while Holmes Co. families
carry haplogroups I and J.

Matrilines were classified as ‘‘case’’ or ‘‘control’’ lines
to test whether specific haplogroups and SNPs confer
risk of AD in the Amish population. Many of the con-
trol individuals were married into the pedigrees and
assumed ‘‘unrelated’’ to that pedigree since they were
not linked through pedigree analysis. We did not ob-
serve frequency differences between the AD cases com-
pared to controls overall or when stratified by sex
(Table. 3, 4). We obtained a similar finding when MCI
individuals were added into the case group.

Discussion

The Amish population of North America was founded
by a small number of Swiss immigrants and has been
studied extensively for Mendelian recessive diseases.
Recently, genetic studies have utilized genetically iso-
lated populations to map complex disease traits since
they often display homogenous phenotypes, exist in the
same environment and, most importantly, have large
multigenerational pedigrees that can be used to track
disease alleles (Arcos-Burgos et al. 2002). Indeed, the
Amish population is a prototypical group to study
complex disease for the reasons mentioned above. This
investigation has provided an initial screen of the
mitochondrial genetic composition of the Ohio and

Indiana Amish and examined the role of mt variations
with AD risk.

We observed 95 independent matrilines within the
pedigrees examined and identified 7 out of the 9 major
European haplogroups. A founder effect, continued
isolation of the communities, and subsequent genetic
drift has increased the frequency of many of the Cau-
casian haplogroups compared to the outbred American
population. The frequency data also revealed that the
Holmes County and Elkhart/LaGrange County kin-
groups founded by the first immigration wave of the
eighteenth century have greater haplotypic diversity (six
haplogroups in each) than in Adams County kin-group
(four haplogroups), which are descendants from the
second immigration. Of course, additional haplogroups
may exist but were not sampled in this study since we
have not yet sampled all pedigrees from the Ohio and
Indiana Amish populations.

The haplogroup frequency data also indicate that
there may be a genetic substructure among the three
Amish communities according to the haplogroup
diversity. This observation is in agreement with the
results from studies of blood-group frequencies, which
demonstrated population substructure among the Lan-
caster County, Pennsylvania, Holmes County, Ohio and
Elkhart/LaGrange Counties Indiana groups (Juberg et
al. 1971; McKusick et al. 1967). Furthermore, previous
studies have shown that increased frequencies of rare
recessive disorders appear to be specific to individual
Amish communities. For example, hemophilia B is
highly common in Holmes County but nearly absent in
Lancaster County and Elkhart/LaGrange Counties
(McKusick 2000). Together, these studies suggest that
Amish communities founded by the separate immigra-
tion waves are genetically distinct. This information is
critical for the successful mapping of complex disease genes
in the Adams, Elkhart/LaGrange and Holmes isolates.

Table 4 Fisher’s exact test (two-sided P-values) for haplogroups and SNPs

Comparison All Case Control Females Only Males Only

AD AD+MCI AD AD+MCI AD AD+MCI

European haplogroups 0.833 0.942 0.149 0.352 0.478 0.546
H 0.460 0.641 0.068 0.261 0.517 0.740
T 0.811 1.000 0.220 0.248 0.372 0.556
U 0.326 0.513 0.175 0.228 0.461 0.701
Haplgroup defining SNPs
7028tc 0.460 0.641 0.068 0.261 0.517 0.740
10398ag 0.624 0.616 0.291 0.256 0.489 1.000
12308ag 0.352 0.542 0.400 0.439 0.287 0.461
1719ga 1.000 1.000 0.656 0.689 0.348 0.348
4580gaa NA NA NA NA NA NA
8251gab 1.000 1.000 1.000 1.000 NA NA
9055ga 1.000 1.000 1.000 1.000 0.489 1.000
13368ag 0.811 1.000 0.220 0.248 0.372 0.556
13708ag 1.000 1.000 0.260 0.471 0.137 0.137
16391ag 0.499 0.494 1.000 1.000 1.000 1.000
3010ag 0.124 0.116 0.248 0.131 1.000 1.000

NA not available
aAll cases and controls had ‘‘g’’ allele for s4580ga
bAll male cases and controls had ‘‘g’’ allele for s8251ga
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In contrast to the difference we observed between the
communities, we observed no differences in the mito-
chondrial haplogroups between AD case and control
matrilines. Mitochondrial dysfunction, as a result from
mtDNA mutations, deletions or polymorphisms, has
been implicated in several neurodegenerative disorders
(Giacchetti et al. 2004; van der Walt et al. 2003). We
previously reported that polymorphisms that lie within
the haplogroup U lineage may increase susceptibility of
AD in males but decrease risk in females (van der Walt
et al. 2004). These data suggest that the etiology of AD
in the Amish, like the Amish communities themselves,
may be distinct from the outbred Caucasian population.
Another explanation for the negative finding is that the
small sample size (40 cases including AD+MCI and 40
controls) may have precluded the statistical power to
detect small or moderate effects. A power calculation
demonstrated that we would have sufficient power to
detect only large effects (e.g., RR>3.5). Thus SNPs or
haplogroups with small or moderate effects would have
been missed in our study.

Our results are unable to correlate AD expression in
the Ohio and Indiana Amish to a specific mitochondrial
haplogroup as we have previously reported in an out-
bred Caucasian population. Therefore, we suggest that
the genetic effect in AD is most likely caused by nuclear
factors in these Amish communities. We are currently
conducting a genome-wide mapping study on these
pedigrees to identify possible chromosomal regions that
influence AD susceptibility in each community.
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